Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phytochem Rev ; 21(6): 1887-1911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645656

RESUMO

Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment. Supplementary Information: The online version contains supplementary material available at 10.1007/s11101-022-09816-1.

2.
J Ethnopharmacol ; 286: 114867, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34822956

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In South Africa, medicinal plants have a history of traditional use, with many species used for treating wounds. The scientific basis of such uses remains largely unexplored. AIM OF THE STUDY: To screen South African plants used ethnomedicinally for wound healing based on their pro-angiogenic and wound healing activity, using transgenic zebrafish larvae and cell culture assays. MATERIALS AND METHODS: South African medicinal plants used for wound healing were chosen according to literature. Dried plant material was extracted using six solvents of varying polarities. Pro-angiogenesis was assessed in vivo by observing morphological changes in sub-intestinal vessels after crude extract treatment of transgenic zebrafish larvae with vasculature-specific expression of a green fluorescent protein. Subsequently, the in vitro anti-inflammatory, fibroblast proliferation and collagen production effects of the plant extracts that were active in the zebrafish angiogenesis assay were investigated using murine macrophage (RAW 264.7) and human fibroblast (MRHF) cell lines. RESULTS: Fourteen plants were extracted using six different solvents to yield 84 extracts and the non-toxic (n=72) were initially screened for pro-angiogenic activity in the zebrafish assay. Of these plant species, extracts of Lobostemon fruticosus, Scabiosa columbaria and Cotyledon orbiculata exhibited good activity in a concentration-dependent manner. All active extracts showed negligible in vitro toxicity using the MTT assay. Lobostemon fruticosus and Scabiosa columbaria extracts showed noteworthy anti-inflammatory activity in RAW 264.7 macrophages. The acetone extract of Lobostemon fruticosus stimulated the most collagen production at 122% above control values using the MRHF cell line, while all four of the selected extracts significantly stimulated cellular proliferation in vitro in the MRHF cell line. CONCLUSIONS: The screening of the selected plant species provided valuable preliminary information validating the use of some of the plants in traditional medicine used for wound healing in South Africa. This study is the first to discover through an evidence-based pharmacology approach the wound healing properties of such plant species using the zebrafish as an in vivo model.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Cicatrização/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Larva , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Medicinas Tradicionais Africanas , Camundongos , Células RAW 264.7 , África do Sul , Peixe-Zebra
3.
J Ethnopharmacol ; 280: 114416, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265381

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Croton (Euphorbiaceae) encompasses 1300 species, which consist of a variety of trees and shrubs distributed across the world. About 26 species are harboured on the African continent. This genus plays an essential role in African folk medicine. Croton species are traditionally used for the treatment of many diverse conditions such as diabetes, malaria, sexually transmitted diseases, cancer, inflammation, fever, digestive problems and fungal infections. AIM OF THE REVIEW: To provide a comprehensive overview of the ethnobotany, traditional uses, phytochemistry and biological activities of six selected southern Africa Croton species; C.gratissimus Burch., C. megalobotrys Müll.-Arg., C. menyhartii Gȕrke, C. pseudopulchellus Pax, C. steenkampianus Gerstner and C. sylvaticus Schltdl.). MATERIALS AND METHODS: Various electronic databases, namely Google, Google Scholar, Scopus, ScienceDirect, Biomed Central and Pubmed, were used to search for information related to the traditional uses, chemistry and pharmacology of Croton species. Books were also consulted to collect all pertinent information. RESULTS AND DISCUSSION: The ethnopharmacology, phytochemistry and biological activities of southern African Croton species are reviewed. The literature revealed that Croton species are trusted traditional medicines for the treatment of microbial infections and malaria. The non-volatile components of Croton species include flavonoids, terpenoids and alkaloids, while the volatile constituents comprise mainly of monoterpenes (α-phellandrene, α-pinene and 1,8-cineole) and sesquiterpenes (caryophyllene oxide). Most of the reported biological activities (anti-oxidant, antimicrobial, anticancer and antimalarial) were based on in vitro assays and were accredited to various extracts. However, both in vitro and in vivo studies, linking the reported activities to specific compounds, are still lacking. CONCLUSIONS: Croton species are used in traditional medicine to treat a range of ailments, and various in vitro biological activities have been investigated, with some extracts exhibiting good activity that could be considered for further investigation. The in vitro activities obtained seem to justify the use of Croton species in traditional medicine. Data on in vivo studies are scarce and studies usually focused on a single collection. The need to establish a quality control protocols for the standardisation of these herbal drugs is also important.


Assuntos
Croton/química , Compostos Fitoquímicos , Etnobotânica , Plantas Medicinais , África do Sul
4.
J Ethnopharmacol ; 239: 111897, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31009705

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Traditional herbal medicines are utilized by 27 million South Africans. Xysmalobium undulatum (Uzara) is one of the most widely used traditional medicinal plants in Southern Africa. A false belief in the safety of herbal medicine may result in liver injury. Herb-induced liver injury (HILI) range from asymptomatic elevation of liver enzymes, to cirrhosis and in certain instances even acute liver failure. Various in vitro and in vivo models are available for the pre-clinical assessment of drug and herbal hepatotoxicity. However, more reliable and readily available in vitro models are needed, which are capable of bridging the gap between existing models and real human exposure. Three-dimensional (3D) spheroid cultures offer higher physiological relevance, overcoming many of the shortcomings of traditional two-dimensional cell cultures. AIMS OF THIS STUDY: This study investigated the hepatotoxic and anti-prolific effects of the crude X. undulatum aqueous extract during a sub-chronic study (21 days), in both a 3D HepG2/C3A spheroid model and the Sprague Dawley rat model. METHODS: HepG2/C3A spheroids were treated with a known hepatotoxin, valproic acid, and crude X. undulatum aqueous extract for 21 days with continuous evaluation of cell viability and proliferation. This was done by evaluating cell spheroid growth, intracellular adenosine triphosphate (ATP) levels and extracellular adenylate kinase (AK). Sprague Dawley rats were treated with the same compounds over 21 days, with evaluation of in vivo toxicity effects on serum chemistry. RESULTS: The results from the in vitro study clearly indicated hepatotoxic effects and possible liver damage following treatment with valproic acid, with associated growth inhibition, loss of cell viability and increased cytotoxicity as indicated by reduced intracellular ATP levels and increased AK levels. These results were supported by the increased in vivo levels of AST, ALT and LDH following treatment of the Sprague Dawley rats with valproic acid, indicative of hepatic cellular damage that may result in hepatotoxicity. The in vitro 3D spheroid model was also able to predict the potential concentration dependant hepatotoxicity of the crude X. undulatum aqueous extract. Similarly, the results obtained from the in vivo Sprague Dawley model indicated moderate hepatotoxic potential. CONCLUSION: The data from both the 3D spheroid model and the Sprague Dawley model were able to indicate the potential concentration dependant hepatotoxicity of the crude X. undulatum aqueous extract. The results obtained from this study also confirmed the ability of the 3D spheroid model to effectively and reliably predict the long-term outcomes of possible hepatotoxicity.


Assuntos
Apocynaceae , Doença Hepática Induzida por Substâncias e Drogas , Extratos Vegetais/toxicidade , Esferoides Celulares/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Células Hep G2 , Humanos , L-Lactato Desidrogenase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Medicinas Tradicionais Africanas , Ratos Sprague-Dawley , África do Sul , Esferoides Celulares/metabolismo , Testes de Toxicidade Subcrônica , Ácido Valproico
5.
Toxicol Mech Methods ; 28(9): 641-652, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29873580

RESUMO

Xysmalobium undulatum (Uzara) is one of the most widely used indigenous traditional herbal remedies in Southern Africa. Commercially available Uzara plant material was used to prepare a crude aqueous extract, of which the toxicity potential was investigated in the hepatic HepG2/C3A cell line in both traditional two-dimensional (2D) and rotating three-dimensional (3D) spheroid cell cultures. These cultures were treated over a period of 4 days at concentrations of 200, 350, 500, and 750 mg/kg plant extract to protein content. Basic physiological parameters of the cell cultures were measured during exposure, including cell proliferation, glucose uptake, intracellular adenosine triphosphate levels, and adenylate kinase release. The results indicated that all physiological parameters monitored were affected in a dose dependent manner, with the highest concentration of Uzara crude water extract (750 mg/kg) resulting in toxicity. Anti-proliferating effects of Uzara crude water extract were observed in both the 2D and 3D cell cultures, with the most pronounced effects at concentrations of 350, 500, and 750 mg/kg. Discrepancies between results obtained from the 2D and 3D cell culture models may be attributed to the type of repair system that is initiated upon exposure, depending on where cells are within the cell cycle. DNA repair systems differ in cells within the G1 phase and non-diving cells, (i.e. cells found predominantly in in vitro 3D and the in vivo situation).


Assuntos
Apocynaceae/química , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/toxicidade , Esferoides Celulares/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Extratos Vegetais/isolamento & purificação , Esferoides Celulares/citologia
6.
Rev. bras. farmacogn ; 27(1): 1-8, Jan.-Feb. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-843796

RESUMO

ABSTRACT Recently there has been a renewed impetus in the search for novel ingredients to be used in the cosmetic industry and Baobab (Adansonia digitata L., Malvaceae) seed oil has received high interest. In this study, a commercial Baobab seed oil sample was characterised (fatty acid content) using GCxGC-ToF-MS and a pilot study on the safety and efficacy of the seed oil was performed. The safety and efficacy of Baobab seed oil after topical application was determined using healthy adult female caucasian participants (n = 20). A 2× magnifying lamp was used for visual analysis, while for monitoring and evaluation of the irritancy level, transepidermal water loss (TEWL) and hydration level of the skin, Chromameter®, Aquaflux® and Corneometer® instruments, respectively, were used. In addition, Aquaflux® and Corneometer® instruments were used to assess occlusive effects. Thirteen methyl esters were identified using GCxGC-ToF-MS. The major fatty acids included 36.0% linoleic acid, 25.1% oleic acid and 28.8% palmitic acid with 10.1% constituting trace fatty acids. The irritancy of sodium lauryl sulphate (SLS) in the patch test differed significantly compared to both de-ionised water (p < 0.001) and Baobab seed oil (p < 0.001) but the difference between the irritancy of Baobab seed oil and de-ionised water was not significant (p = 0.850). The moisture efficacy test indicated a reduced TEWL (p = 0.048) and an improved capacitance moisture retention (p < 0.001) for all the test products (Baobab oil, liquid paraffin, Vaseline® intensive care lotion and Vaseline®). The occlusivity wipe-off test indicated an increased moisture hydration (p < 0.001) and decreased TEWL particularly when Baobab oil was applied. Baobab possesses hydrating, moisturising and occlusive properties when topically applied to the skin. Baobab seed oil could be a valuable functional ingredient for cosmeceutical applications.

7.
Phytochemistry ; 117: 554-568, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26228533

RESUMO

Gingerols are the major pungent compounds present in the rhizomes of ginger (Zingiber officinale Roscoe) and are renowned for their contribution to human health and nutrition. Medicinal properties of ginger, including the alleviation of nausea, arthritis and pain, have been associated with the gingerols. Gingerol analogues are thermally labile and easily undergo dehydration reactions to form the corresponding shogaols, which impart the characteristic pungent taste to dried ginger. Both gingerols and shogaols exhibit a host of biological activities, ranging from anticancer, anti-oxidant, antimicrobial, anti-inflammatory and anti-allergic to various central nervous system activities. Shogaols are important biomarkers used for the quality control of many ginger-containing products, due to their diverse biological activities. In this review, a large body of available knowledge on the biosynthesis, chemical synthesis and pharmacological activities, as well as on the structure-activity relationships of various gingerols and shogaols, have been collated, coherently summarised and discussed. The manuscript highlights convincing evidence indicating that these phenolic compounds could serve as important lead molecules for the development of therapeutic agents to treat various life-threatening human diseases, particularly cancer. Inclusion of ginger or ginger extracts in nutraceutical formulations could provide valuable protection against diabetes, cardiac and hepatic disorders.


Assuntos
Catecóis/farmacologia , Suplementos Nutricionais , Álcoois Graxos/farmacologia , Zingiber officinale , Animais , Antialérgicos/química , Antialérgicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Catecóis/química , Catecóis/metabolismo , Modelos Animais de Doenças , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Zingiber officinale/química , Zingiber officinale/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Plantas Medicinais
8.
Phytochemistry ; 96: 15-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24054028

RESUMO

Menthol is a cyclic monoterpene alcohol which possesses well-known cooling characteristics and a residual minty smell of the oil remnants from which it was obtained. Because of these attributes it is one of the most important flavouring additives besides vanilla and citrus. Due to this reason it is used in a variety of consumer products ranging from confections such as chocolate and chewing gum to oral-care products such as toothpaste as well as in over-the-counter medicinal products for its cooling and biological effects. Its cooling effects are not exclusive to medicinal use. Approximately one quarter of the cigarettes on the market contain menthol and small amounts of menthol are even included in non-mentholated cigarettes. Natural menthol is isolated exclusively from Mentha canadensis, but can also be synthesised on industrial scale through various processes. Although menthol exists in eight stereoisomeric forms, (-)-menthol from the natural source and synthesised menthol with the same structure is the most preferred isomer. The demand for menthol is high and it was previously estimated that the worldwide use of menthol was 30-32,000 metric tonnes per annum. Menthol is not a predominant compound of the essential oils as it can only be found as a constituent of a limited number of aromatic plants. These plants are known to exhibit biological activity in vitro and in vivo such as antibacterial, antifungal, antipruritic, anticancer and analgesic effects, and are also an effective fumigant. In addition, menthol is one of the most effective terpenes used to enhance the dermal penetration of pharmaceuticals. This review summarises the chemical and biological properties of menthol and highlights its cooling effects and toxicity.


Assuntos
Mentol , Monoterpenos , Temperatura Corporal/fisiologia , Humanos , Mentha/química , Mentol/química , Mentol/isolamento & purificação , Mentol/farmacologia , Estrutura Molecular , Monoterpenos/química , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia
9.
Molecules ; 17(6): 6953-81, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22728369

RESUMO

Eugenol is a major volatile constituent of clove essential oil obtained through hydrodistillation of mainly Eugenia caryophyllata (=Syzygium aromaticum) buds and leaves. It is a remarkably versatile molecule incorporated as a functional ingredient in numerous products and has found application in the pharmaceutical, agricultural, fragrance, flavour, cosmetic and various other industries. Its vast range of pharmacological activities has been well-researched and includes antimicrobial, anti-inflammatory, analgesic, anti-oxidant and anticancer activities, amongst others. In addition, it is widely used in agricultural applications to protect foods from micro-organisms during storage, which might have an effect on human health, and as a pesticide and fumigant. As a functional ingredient, it is included in many dental preparations and it has also been shown to enhance skin permeation of various drugs. Eugenol is considered safe as a food additive but due to the wide range of different applications, extensive use and availability of clove oil, it is pertinent to discuss the general toxicity with special reference to contact dermatitis. This review summarises the pharmacological, agricultural and other applications of eugenol with specific emphasis on mechanism of action as well as toxicity data.


Assuntos
Eugenol/farmacologia , Agroquímicos/química , Agroquímicos/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antimutagênicos/química , Antimutagênicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Eugenol/química , Eugenol/imunologia , Eugenol/toxicidade , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia
10.
J Ethnopharmacol ; 137(3): 1124-9, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21798331

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The South African plant Sceletium tortuosum has been known for centuries for a variety of traditional uses, and, more recently, as a possible source of anti-anxiety or anti-depressant effects. A standardised extract Zembrin(®) was used to test for pharmacological activities that might be relevant to the ethnopharmacological uses, and three of the main alkaloids were also tested. MATERIALS AND METHODS: A standardised ethanolic extract was prepared from dried plant material, along with the purified alkaloids mesembrine, mesembrenone and mesembrenol. These were tested on a panel of receptors, enzymes and other drug targets, and for cytotoxic effects on mammalian cells. RESULTS: The extract was a potent blocker in 5-HT transporter binding assays (IC(50) 4.3 µg/ml) and had powerful inhibitory effects on phosphodiesterase 4 (PDE4) (IC(50) 8.5 µg/ml), but not other phosphodiesterases. There were no cytotoxic effects. Mesembrine was the most active alkaloid against the 5-HT transporter (K(i) 1.4 nM), while mesembrenone was active against the 5-HT transporter and PDE4 (IC(50)'s<1 µM). CONCLUSIONS: The activity of the Sceletium tortuosum extract on the 5-HT transporter and PDE4 may explain the clinical effects of preparations made from this plant. The activities relate to the presence of alkaloids, particularly mesembrine and mesembrenone.


Assuntos
Aizoaceae , Alcaloides/farmacologia , Alimento Funcional , Medicinas Tradicionais Africanas , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Aizoaceae/química , Alcaloides/isolamento & purificação , Animais , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Alcaloides Indólicos/farmacologia , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Ligantes , Inibidores da Fosfodiesterase 4/isolamento & purificação , Componentes Aéreos da Planta , Plantas Medicinais , Ensaio Radioligante , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/isolamento & purificação , África do Sul , Células U937
11.
AAPS PharmSciTech ; 5(1): E18, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-15198539

RESUMO

A Plackett-Burman design was employed to develop and optimize a novel crosslinked calcium-aluminum-alginate-pectinate oilisphere complex as a potential system for the in vitro site-specific release of Mentha piperita, an essential oil used for the treatment of irritable bowel syndrome. The physicochemical and textural properties (dependent variables) of this complex were found to be highly sensitive to changes in the concentration of the polymers (0%-1.5% wt/vol), crosslinkers (0%-4% wt/vol), and crosslinking reaction times (0.5-6 hours) (independent variables). Particle size analysis indicated both unimodal and bimodal populations with the highest frequency of 2 mm oilispheres. Oil encapsulation ranged from 6 to 35 mg/100 mg oilispheres. Gravimetric changes of the crosslinked matrix indicated significant ion sequestration and loss in an exponential manner, while matrix erosion followed Higuchi's cube root law. Among the various measured responses, the total fracture energy was the most suitable optimization objective (R2 = 0.88, Durbin-Watson Index = 1.21%, Coefficient of Variation (CV) = 33.21%). The Lagrangian technique produced no significant differences (P > .05) between the experimental and predicted total fracture energy values (0.0150 vs 0.0107 J). Artificial Neural Networks, as an alternative predictive tool of the total fracture energy, was highly accurate (final mean square error of optimal network epoch approximately 0.02). Fused-coated optimized oilispheres produced a 4-hour lag phase followed by zero-order kinetics (n > 0.99), whereby analysis of release data indicated that diffusion (Fickian constant k1 = 0.74 vs relaxation constant k2 = 0.02) was the predominant release mechanism.


Assuntos
Química Farmacêutica , Sistemas de Liberação de Medicamentos , Mentha piperita/química , Óleos/administração & dosagem , Portadores de Fármacos , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA